Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Toxins (Basel) ; 12(4)2020 04 02.
Article in English | MEDLINE | ID: covidwho-1453289

ABSTRACT

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Toxins/metabolism , Lung/microbiology , Respiratory Tract Infections/microbiology , Adaptive Immunity , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Disease Progression , Host-Pathogen Interactions , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , Signal Transduction
2.
Front Endocrinol (Lausanne) ; 11: 569241, 2020.
Article in English | MEDLINE | ID: covidwho-1389156

ABSTRACT

The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.


Subject(s)
COVID-19 Drug Treatment , Receptors, Melanocortin/agonists , Respiratory Tract Infections/drug therapy , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Melanocyte-Stimulating Hormones/metabolism , Respiratory Tract Infections/etiology , Respiratory Tract Infections/metabolism
3.
Anal Bioanal Chem ; 413(7): 1787-1798, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1336052

ABSTRACT

Rapid and accurate identification of respiratory tract infection pathogens is of utmost importance for clinical diagnosis and treatment, as well as prevention of pathogen transmission. To meet this demand, a microfluidic chip-based PCR-array system, Onestart, was developed. The Onestart system uses a microfluidic chip packaged with all the reagents required, and the waste liquid is also collected and stored on the chip. This ready-to-use system can complete the detection of 21 pathogens in a fully integrated manner, with sample lysis, nucleic acid extraction/purification, and real-time PCR sequentially implemented on the same chip. The entire analysis process is completed within 1.5 h, and the system automatically generates a test report. The lower limit-of-detection (LOD) of the Onestart assay was determined to be 1.0 × 103 copies·mL-1. The inter-batch variation of cycle threshold (Ct) values ranged from 0.08% to 0.69%, and the intra-batch variation ranged from 0.9% to 2.66%. Analytical results of the reference sample mix showed a 100% specificity of the Onestart assay. The analysis of batched clinical samples showed consistency of the Onestart assay with real-time PCR. With its ability to provide rapid, sensitive, and specific detection of respiratory tract infection pathogens, application of the Onestart system will facilitate timely clinical management of respiratory tract infections and effective prevention of pathogen transmission. Onestart, a ready-to-use system, can detect 21 pathogens in a fully integrated manner on a microchip within 1.5 h.


Subject(s)
Automation , Polymerase Chain Reaction/methods , Respiratory Tract Infections/diagnosis , COVID-19 Testing/methods , Diagnosis, Computer-Assisted , Equipment Design , Humans , Lab-On-A-Chip Devices , Limit of Detection , Microfluidic Analytical Techniques/methods , Microfluidics , Pattern Recognition, Automated , Quality Control , RNA, Viral/analysis , Reproducibility of Results , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/virology , SARS-CoV-2 , Sensitivity and Specificity , Viruses
4.
J Heart Lung Transplant ; 39(4): 379-388, 2020 04.
Article in English | MEDLINE | ID: covidwho-783270

ABSTRACT

BACKGROUND: Respiratory viral infections can increase the risk of chronic lung allograft dysfunction after lung transplantation, but the mechanisms are unknown. In this study, we determined whether symptomatic respiratory viral infections after lung transplantation induce circulating exosomes that contain lung-associated self-antigens and assessed whether these exosomes activate immune responses to self-antigens. METHODS: Serum samples were collected from lung transplant recipients with symptomatic lower- and upper-tract respiratory viral infections and from non-symptomatic stable recipients. Exosomes were isolated via ultracentrifugation; purity was determined using sucrose cushion; and presence of lung self-antigens, 20S proteasome, and viral antigens for rhinovirus, coronavirus, and respiratory syncytial virus were determined using immunoblot. Mice were immunized with circulating exosomes from each group and resulting differential immune responses and lung histology were analyzed. RESULTS: Exosomes containing self-antigens, 20S proteasome, and viral antigens were detected at significantly higher levels (p < 0.05) in serum of recipients with symptomatic respiratory viral infections (n = 35) as compared with stable controls (n = 32). Mice immunized with exosomes from recipients with respiratory viral infections developed immune responses to self-antigens, fibrosis, small airway occlusion, and significant cellular infiltration; mice immunized with exosomes from controls did not (p < 0.05). CONCLUSIONS: Circulating exosomes isolated from lung transplant recipients diagnosed with respiratory viral infections contained lung self-antigens, viral antigens, and 20S proteasome and elicited immune responses to lung self-antigens that resulted in development of chronic lung allograft dysfunction in immunized mice.


Subject(s)
Exosomes/metabolism , Graft Rejection/etiology , Graft Rejection/metabolism , Lung Transplantation/adverse effects , Respiratory Tract Infections/metabolism , Virus Diseases/metabolism , Aged , Animals , Antigens, Viral/metabolism , Autoantigens/metabolism , Case-Control Studies , Female , HLA Antigens/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Respiratory Tract Infections/complications , Respiratory Tract Infections/virology , Virus Diseases/complications
5.
Diabetes Metab Syndr ; 14(6): 1889-1894, 2020.
Article in English | MEDLINE | ID: covidwho-778771

ABSTRACT

BACKGROUND AND AIMS: The link between diabetes and increased risk of infectious disease has long been recognized, but has re-entered sharp focus following the COVID-19 pandemic. METHODS: A literature search was conducted in PubMed for articles in English on diabetes and infection. RESULTS: Diabetes predisposes to infections through alterations in innate and acquired immune defenses. Outcomes of infection are worse in people with uncontrolled diabetes, and infection can worsen hyperglycemia in hitherto well controlled diabetes (bidirectional relationship). Diabetes does not increase the risk of infection with COVID-19 per se, but predisposes to severe disease and poor outcomes. COVID-19 has also been linked to deterioration of glycemic control as well as new-onset diabetes. CONCLUSIONS: Clinicians caring for people with diabetes should be aware of the increased risk of infections in this population, as well as the possibility of worsening hyperglycemia. A holistic approach with frequent monitoring of blood glucose levels and appropriate titration of medications, along with close attention to nutritional status, is essential to ensure the best possible outcomes.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Tuberculosis, Pulmonary/epidemiology , Adaptive Immunity/immunology , Blood Glucose/metabolism , COVID-19/immunology , COVID-19/metabolism , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Glycemic Control , Humans , Immunity, Innate/immunology , India/epidemiology , Infections/epidemiology , Infections/immunology , Infections/metabolism , Reproductive Tract Infections/epidemiology , Reproductive Tract Infections/immunology , Reproductive Tract Infections/metabolism , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Skin Diseases, Bacterial/epidemiology , Skin Diseases, Bacterial/immunology , Skin Diseases, Bacterial/metabolism , Soft Tissue Infections/epidemiology , Soft Tissue Infections/immunology , Soft Tissue Infections/metabolism , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Urinary Tract Infections/epidemiology , Urinary Tract Infections/immunology , Urinary Tract Infections/metabolism
6.
Int J Mol Med ; 46(1): 17-26, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-164754

ABSTRACT

In view of the emerging COVID­19 pandemic caused by SARS­CoV­2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID­19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS­CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin­converting enzyme 2 (ACE2), known to be the receptor for SARS­CoV­2. Improved antiviral immunity by zinc may also occur through up­regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti­inflammatory activity by inhibiting NF­κB signaling and modulation of regulatory T­cell functions that may limit the cytokine storm in COVID­19. Improved Zn status may also reduce the risk of bacterial co­infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID­19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID­19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator­induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.


Subject(s)
COVID-19/metabolism , COVID-19/prevention & control , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/prevention & control , Zinc/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Humans , Pandemics , Pneumonia/metabolism , Pneumonia/prevention & control , Risk Factors , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL